Ant Collaborative Filtering Addressing Sparsity and Temporal Effects
نویسندگان
چکیده
منابع مشابه
A NOVEL FUZZY-BASED SIMILARITY MEASURE FOR COLLABORATIVE FILTERING TO ALLEVIATE THE SPARSITY PROBLEM
Memory-based collaborative filtering is the most popular approach to build recommender systems. Despite its success in many applications, it still suffers from several major limitations, including data sparsity. Sparse data affect the quality of the user similarity measurement and consequently the quality of the recommender system. In this paper, we propose a novel user similarity measure based...
متن کاملIncremental Collaborative Filtering Considering Temporal Effects
Recommender systems require their recommendation algorithms to be accurate, scalable and should handle very sparse training data which keep changing over time. Inspired by ant colony optimization, we propose a novel collaborative filtering scheme: Ant Collaborative Filtering that enjoys those favorable characteristics above mentioned. With the mechanism of pheromone transmission between users a...
متن کاملCollaborative Filtering Based on Content Addressing
Collaborative Filtering (CF) is one of the most popular recommendation techniques. It is based on the assumption that users with similar tastes prefer similar items. One of the major drawbacks of the CF is its limited scalability, as the complexity of the CF grows linearly both with the number of available users and items. This work proposes a new fast variant of the CF employed over multi-dime...
متن کاملData Sparsity Issues in the Collaborative Filtering Framework
With the amount of available information on the Web growing rapidly with each day, the need to automatically filter the information in order to ensure greater user efficiency has emerged. Within the fields of user profiling and Web personalization several popular content filtering techniques have been developed. In this chapter we present one of such techniques – collaborative filtering. Apart ...
متن کاملAlleviating the Sparsity in Collaborative Filtering using Crowdsourcing
As a novel method for alleviating the sparsity problem in collaborative filtering (CF), we explore crowdsourcing-based CF, namely CrowdCF, which solicits new ratings from the crowd. We study three key questions that need to be addressed to effectively utilize CrowdCF: (1) how to select items to show for crowd workers to elicit extra ratings, (2) how to decide the minimum quantity asked to the c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.2973931